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Abstract. This article reports results concerning the fracture of a 2d triangular lattice of atoms linked
by springs. The lattice is submitted to controlled strain tests and the influence of both porosity and
temperature on failure is investigated. The porosity is found on one hand to decrease the stiffness of the
specimen but on the other hand it increases the deformation sustained prior to failure. Temperature is
shown to control the ductility due to the presence of cavities that grow and merge. The rough surfaces
resulting from the propagation of the crack exhibit self-affine properties with a roughness exponent ζ =
0.59 ± 0.07 over a range of length scales which increases with temperature. Large cavities also have rough
walls which are found to be fractal with a dimension, D, which evolves with the distance from the crack tip.
For large distances, D is found to be close to 1.5, and close to 1.0 for cavities just before their coalescence
with the main crack.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks – 62.20.Fe Deformation and plasticity (including
yield, ductility, and superplasticity) – 81.40.Np Fatigue, corrosion fatigue, embrittlement, cracking, fracture
and failure – 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

Many materials such as cement or rocks have mechanical
properties which are greatly influenced by the presence
of pre-existing defects such as micro cracks and micro-
porosity due to their elaboration process [1,2]. In order
to understand the mechanical behavior of such materials,
various numerical models have been developed.

The most classical approach consists in using dis-
cretization schemes for the continuum description. The
favorite scheme in fracture and damage mechanics is the
finite element method. Yet network models constitute an
alternative scheme which has been developed in order to
simulate the effect of heterogeneities on the fracture pro-
cess. Network models can be classified in three categories.
The first group is composed of scalar models, which ex-
ploit the similarity between the failure of a heterogeneous
material submitted to an external load and the breakdown
of an array of randomly distributed fuses [3,4]. The results
can be used as a very interesting guideline, but in order
to compare theory with experiments, it is inevitable to
consider the vectorial nature of elasticity. In the central
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force model [5], bonds are springs which can freely rotate
around sites. Each site, which will be called “atom” in
the following, undergoes displacements under the action
of the local forces acting on it. The third category of mod-
els, which will not be considered here, is the category of
beam models [6], which contain full bond bending elastic-
ity. In this case the elastic energy of the beam is the sum of
the elongation, shear and flexural energies. This contrasts
with the spring model for which only the elongation of the
bonds leads to their failure.

For all network approaches, bonds are supposed to
model the material at a mesoscopic level, and the aim is to
investigate the interrelation between disorder and proper-
ties of the network – such as fracture stress or strain, and
damage spreading. The surprising result is that properties
of the network are related to the system size by scaling
laws involving non trivial exponents, independent of the
precise distribution, and of the microscopic aspects of the
considered model [7].

Scaling is also observed on rough fracture surfaces
for a large variety of materials [8,9] (from rocks [10] to
wood [11] through metallic alloys [12] and glasses [13,14]),
which can be described as self-affine structures. Self-
affinity [15] means that a profile extracted from such a



366 The European Physical Journal B

surface, described by a heights distribution z(x), where x
is a Cartesian coordinate along the profile, remains statis-
tically invariant under the scale transformation z(λx) =
λζz(x), where the Hurst or roughness exponent ζ char-
acterizes the roughness of the surface. Fluctuations of
the surface heights over a length L are described by:
σz(L) = � (L/�)ζ . Here � is the topothesy, defined as the
horizontal distance over which fluctuations in height have
a RMS slope of one [10]. For 3d fracture surfaces, ex-
perimental values of ζ are found to be close to 0.8, for
most materials [10–14], with the exception of some ma-
terials displaying intergranular fractures, such as sand-
stone rocks, where ζ ∼ 0.5 [16]. The exponent 0.5 was also
measured on glasses [13] and on metallic alloys [17,18] at
length scales smaller than the length scales at which the
0.8 exponent is observed [8,9].

Experiments conducted on two-dimensional samples
reported somewhat smallest self-affine exponent; 0.6± 0.1
for paper [19] and 0.68 ± 0.04 for wood, when the crack
propagates along the fibers [20]. Recently, a model based
on the effect of damage cavity nucleation due to localized
yielding in an otherwise elastic 2d medium [21] was able
to reproduce the self-affine roughness observed experimen-
tally.

In this paper, we present simulations of a mode I
macro crack initiated by a notch growing in a bidimen-
sional porous material. The model is precisely described
in Section 2. The initial pores are defined as regions of the
sample where bonds are missing. In our model, the tem-
perature of the network is controlled and its effect on the
macroscopic mechanical behaviour of the system is studied
in Section 3. In this section, the stress-strain curves cor-
responding to a samples with no disorder and with 30%
porosity are compared for two values of the temperature.
It is shown that under an increasing strain, the pores will
grow into cavities, and merge with each other and with
the main crack. Fracture hence proceeds by voids growth
and coalescence. The size and the density of the cavities
are shown to depend on temperature. At low temperature,
the stress concentration due to the initial notch dominates
the junction of cavities which are most likely collinear and
located in its vicinity, while at high temperature, the cav-
ities spread over the whole specimen. This has strong con-
sequences on the failure mechanism: at low temperature,
the specimen breaks in a brittle way, while at high tem-
perature, it exhibits a ductile behaviour. Once the porous
samples are broken, we study the resulting rough profiles,
which are, like for real 2d cracks, self-affine with a rough-
ness exponent ζ = 0.59 ± 0.07, independent of tempera-
ture. The results of the analysis of the morphology of both
the fracture profiles and the cavities during their growth
prior to failure are presented in Section 4. Finally, Sec-
tion 5 is devoted to discussion.

2 The model

The model consists in a 2d triangular lattice with nearest-
neighbour interactions (see Fig. 1) that break as soon

Fig. 1. Illustration of the elastic bond network used in the
simulations. a) shows the specimen submitted to an external
uniaxial tension. b) is a detailed view of the material consisting
of atoms initially placed on a triangular lattice and connected
by identical elastic springs. Note that a fixed density of springs
is removed before application of the load.

as the mutual distance becomes larger than a prescribed
threshold. More precisely, by noting ri the position of
the ith “atom”, the force fij due to the interaction with
the jth particle can be written as follows:

fij = F (|ri − rj |) ri − rj

|ri − rj | (1)

where | · | is the modulus and F (u) is a scalar function
defining the force dependence on the distance u between
atoms. Here, we have chosen F (u) to be a linear func-
tion u: F (u) = −α(u − d) (harmonic potential). The pa-
rameters are fixed in such a way that u = d is the equi-
librium position and α is the spring constant. In order to
explicitly eliminate the irrelevant parameters, we suitably
rescale the spatial variables as well as time: in this way,
both α and d can be fixed to unity in all that follows.
Accordingly, all the quantities defined in this paper are
dimensionless.

In this work the size of the network is kept constant
and is made of 68608 triangular bonds. Due to the ori-
entation of the lattice with respect to the network (see
Fig. 1), its sizes in unit of atoms distance d is 886.8 for
length, and 201 for width.
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As far as the sample is concerned, c denotes the
fraction of initially missing bonds. c = 0 thus corre-
sponds to a perfectly homogeneous specimen. Note that
c = cp ≡ 0.653 corresponds to the ordinary percolation
threshold: for c > cp so many bonds are missing that
the lattice is no longer macroscopically connected [22].
Moreover, in the case of central forces, there is a sec-
ond threshold, the so-called rigidity-percolation threshold
(cr = 0.3398 [23,24]) above which the lattice although
connected has zero Young modulus. In what follows, the
fraction of missing bonds is set either to 0, or to c = 0.3.

A triangular notch, the sides of which have a size
of 50 atoms is carved on the left side of the lattice to act
as a stress concentrator. Hence, a main crack propagates
from the notch tip, along the x direction (see Fig. 1). The
lattice is then submitted to a controlled strain which acts
vertically along the upper and lower sides of the sample, to
which fixed boundary conditions are imposed, while free
boundary conditions are chosen along the right and left
borders.

The application of an external strain which gradually
increases by small steps of size δε = 0.000725 results in
a deformation of each spring, hence into atoms motion.
Between two successive increases of the strain, the new
positions of the atoms are computed. The first step of
the calculation consists in determining, for each atom,
the total force applied by its neighbours. Newton’s equa-
tion [25] is then solved for each atom i (coordinates ri(t);
velocity ṙi(t)). For this purpose, we use the leap-frog al-
gorithm [25,26], which is a modified version of the Verlet
algorithm. This algorithm uses positions and accelerations
at time t and positions at time t+ δt to predict the posi-
tions at time t + δt, where δt is the integration step, set
to the value 10−2. This step is repeated N times before a
new δε increase of the strain is imposed.

A bond breaks when it reaches a critical length d∗
which is set to the uniform value 1.1. The fracture of a
bond transforms its potential energy into kinetic energy,
which travels all over the lattice. A local dissipation, i.e. a
force term −γṙi, is added along the left and right bound-
aries (Fig. 1) where we expect the coupling with the exter-
nal world to be more efficient in removing kinetic energy
from the specimen. In the present work, we use γ = 1.

A close look at the amount of kinetic energy present in
the system prior to any strain increase reveals fluctuations
of the order of 10% with an average 〈E〉 constant over the
whole range of strains including the loading and the failure
parts of the test. The parameter that controls the amount
of kinetic energy present in the network is the numberN of
iterations used to determine atomic positions. A decrease
in N results in an increase of the amount of kinetic energy
remaining in the network.

The kinetic energy plays the role of a temperature
which is normalized by the energy needed to break a single
bond: εc = 0.5α(d−d∗)2, under our conditions εc = 0.005.
It is convenient to define a reduced equivalent temperature

T ∗ =
〈E〉
εc

. (2)

The reduced equivalent temperature – to be called “tem-
perature” in the following for the sake of simplicity – can
be seen as the number of bonds that the remaining kinetic
energy might break if it were not diluted in the network.

In the present work, two different values of N are used:
N = 105 and N = 106, which lead respectively to reduced
equivalent temperatures T ∗ = 80 and T ∗ = 8. Before dis-
cussing the quantitative results concerning the structure
of damage and the roughness of the fracture profiles, let
us here briefly illustrate the phenomenology that can be
observed for the two values of T ∗.

3 Macroscopic mechanical properties

Let us first examine the stress response at the two differ-
ent reduced equivalent temperatures. Figure 2 shows the
variation of the stress as a function of strain for two sets
of simulations performed at T ∗ = 80 and T ∗ = 8, for two
different specimens. The first specimen is initially intact
(c = 0), meaning that no bonds were removed. From the
second one, 30% of the springs are removed at random
(c = 0.3), prior to the application of the load.

After a first stage where the system gets easily de-
formed − e.g. for strains smaller than 0.005 −, the stress-
strain curves all exhibit a linear behaviour. The stiffness
decreases when bonds are removed, from 2.5± 0.2 for the
intact specimen to 0.70±0.04 when c = 0.3. This decrease
does not seem to be temperature-dependent.

There is another major difference between the be-
haviours of the two specimens. As reported in Table 1, for
a given temperature, the initially damaged network breaks
at a lower stress but sustains a higher deformation. This
is a typical “quasi-brittle” behaviour, where toughening
in an intrinsically brittle material is the result of dam-
age created ahead of the crack tip, which screens out the
external field undergone by the main crack.

Let us now focus on the effect of the temperature.
While the stiffness is only a function of the density of
remaining springs, the maximum strain reached before
the onset of crack propagation increases with tempera-
ture, as shown in Table 1. At low temperature, a sharp
decrease of the stress is observed after the critical strain
is reached. The strain-stress curve is more rounded for
a larger temperature. This effect reflects the presence of
damage ahead of the crack tip, as can been seen in Fig-
ures 3 and 4, which show various stages of the crack prop-
agation for the two temperatures. It is clear from these
figures that a temperature increase results in an increase
of the number of damage cavities. This can be seen on the
dynamics of bond failures: as shown in Figure 5, bonds
start breaking at a lower strain when the temperature is
increased. For T ∗ = 8, the number of broken bonds as a
function of strain almost follows a step function, and in-
creases abruptly when the crack starts to propagate. This
distribution broadens when the temperature is increased
up to 80, showing that some of the bonds are broken before
the main crack starts to propagate. Despite this change
in the shape of the distribution of the number of broken
bonds, which has a strong influence on the macroscopic
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Fig. 2. Stress-strain evolution of the system. Circles and
squares correspond respectively to c = 0.3 and c = 0 (non-
porous material). Filled and empty symbols correspond respec-
tively to T ∗ = 8 and 80. εmax, σmax and εσmax which stand
for the maximum strain (reached at the onset of complete fail-
ure), the maximum stress reached during the test, and the
corresponding strain are indicated for one of the tests. These
values are used to characterize the mechanical properties of the
samples reported in Table 1.

Table 1. Mechanical properties of the system as a function of
T ∗ for two different fractions of missing springs c = 0.0 and
c = 0.3. εmax, σmax and εσmax are defined in Figure 2.

T ∗ 80 8 T ∗ 80 8
c = 0 εσmax 0.014 0.0096 c = 0.3 εσmax 0.023 0.022

σmax 0.029 0.024 σmax 0.017 0.013
εmax 0.024 0.012 εmax 0.029 0.026

mechanical properties of the network, the total number of
broken bonds changes only slightly, from 209 for T ∗ = 8
to 241 for T ∗ = 80, which only represents approximately
0.15% of the springs.

The other striking difference occurring when the tem-
perature is increased is an increase in the vertical shift of
the stress-strain curve. In fact, a linear fit of the data indi-
cates that the strain-stress curves do not pass through 0.
This indicates that an excess of stress is present within
the material. This quantity is independent of the disor-
der and evolves from 2 × 10−4 for T ∗ = 8 to 2 × 10−3

for T ∗ = 80. Note that stress is applied via the forces
acting on the surface atoms: a positive stress excess thus
indicates a force acting from the bulk toward the outside
and comes from the energy flux going from the network,
at temperature T ∗, to its “cold” sides where damping of
the energy is imposed. This effect is equivalent to what
would be observed when a system at a given temperature
is bounded by sides at a fixed temperature. The pressure
or the normal stress acting on the boundaries would be in
proportion with the specimen temperature.

This section points out that changes in the network
porosity and temperature greatly influence its macro-
scopic properties. Porosity makes the creation of dam-

Fig. 3. Breakdown of the atoms network (c = 0.3) under strain
test performed at the temperature T ∗ = 8. From bottom to top
the strain is respectively ε = 0.0223, 0.0224, 0.0225 and 0.0282.
The crack propagates from the triangular notch located on the
left side of the sample. Small damage cavities located ahead of
the crack tip can be seen for ε = 0.0225. This contrasts with
the behavior exhibited in Figure 4.

Fig. 4. Breakdown under tension of a network with c = 0.3
and T ∗ = 80. From bottom to top the strain is respectively
ε = 0.0217, 0.0231, 0.0225 and 0.0289. Even for a strain as low
as 0.0217, damage cavities nucleate ahead of the crack tip. As
strain increases, damage spreads and, for the ultimate value of
the strain, it fills the whole sample.
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Fig. 5. Filled and unfilled symbols correspond respectively to
T ∗ = 8 and 80. Circles show the stress-strain variation for a
porosity c = 0.3. Diamonds show the number of broken bonds
vertically normalized to fit the plot.

age cavities easier; their density is shown to be dependent
on temperature. At low temperature, cavities nucleate at
the crack tip, in the region where the stress is maximum.
When the temperature rises, the first bonds to break are
located at a larger distance from the crack tip and form
cavities which spread over the network; the crack prop-
agates in the damaged material by meandering from one
cavity to another. This phenomenon has a strong effect on
the maximum strains that can be sustained by the struc-
ture. The deviation from the main direction of propaga-
tion results, after failure, into rough fracture profiles. The
next section is devoted to the analysis of their statistical
properties.

4 Self-affine properties of the fracture lines

After each mechanical test, the positions of atoms belong-
ing to the two fracture lines are recorded. Figure 6 shows
the four profiles obtained from the two tests performed
at T ∗ = 8 and 80 on the porous material. In the past
years, various methods have been developed to measure
the roughness exponent of self-affine structures. In this
paper, two statistically independent methods are used,
namely the average wavelet coefficient (AWC) analysis [27]
and the min-max method [15].

In the case of the AWC analysis the one-dimensional
line z(x) is transformed into the wavelet domain as

W[y](a, b) =
1√
a

∫
ψ∗

a,b(x)z(x)dx, (3)

where ψa,b(x) is obtained from the analyzing wavelet ψ
(in our case a Daubechies wavelet [28]), via rescaling and
translation, ψa,b(x) = ψ((x − b)/a). The AWC measures
the average “energy” present in the profile at a given scale,
defined as the arithmetic average of |W[y](a, b)|2 over all
possible locations b, and for a statistically self-affine profile
with exponent ζ, it scales as: 〈|W[y](a, b)|2〉b ∼ a2ζ+1.

0 200 400 600 800
−200

−100

0

100

200

Fig. 6. Fractures profiles obtained after the breakdown of the
lattice with c = 0.3. The two top curves correspond to the
top and bottom profiles obtained for T ∗ = 80. The two lowest
profiles are for T ∗ = 8.

For the second method, the linear trend of the profile of
length L is first removed, and the obtained line is divided
into windows of width r. The difference ∆z(r) between
the maximum and minimum height is computed in each
window, and then averaged other all possible windows of
size r. For a self-affine profile, a power law behavior is
expected:

〈∆z(r)〉 ∝ rζ . (4)

For both methods, the self-affine scaling invariance will
be revealed by data aligned along a straight line on a log-
log plot, with a slope which provides an estimate of ζ.
Figures 7 and 8 shows log-log plots of the results of the
AWC and the min-max methods respectively, for the four
profiles considered. A self-affine domain can be defined in
each case and a self-affine exponent can be measured. In
the case of the wavelet analysis (Fig. 7), ζ is found close
to 0.60 ± 0.07 for T ∗ = 80 and to 0.55 ± 0.1 for T ∗ = 8.
For the min-max method (Fig. 8), a linear fit indicates
that ζ = 0.65 ± 0.1 for T ∗ = 80 and ζ = 0.55 ± 0.02 for
T ∗ = 8. The self-affine exponent characterizing the ge-
ometry of the profiles may appear to depend slightly on
temperature, with a slight increase when the temperature
rises from 8 to 80. However, the scaling domain is quite
restricted (especially when the AWC method is used), and
the difference lies within error bars. When averaged over
the imposed temperature, the self-affine exponent is found
to be close to 0.59± 0.07. The difference in the lower cut-
off revealed by the two methods may be attributed to the
presence of overhangs on the profiles (see Fig. 6), which are
not included in the AWC description, as discussed in [29].
Contrary to the value of the exponent, the self-affine cor-
relation length, defined as the upper cutoff of the power-
law domain, appears to be temperature-dependent and is
found to be close to 100 atom spacings for T ∗ = 8, while
for T ∗ = 80 it overpasses the system size (886 interatomic
spacings).
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Fig. 7. log10〈|W[y](a, b)|2〉b as function of log10(a) where a is
in unit of d. Circles and squares show the result of the analysis
of the top and bottom profiles after failure at T ∗ = 80 while di-
amonds and crosses are obtained when top and bottom failure
profiles obtained at T ∗ = 8 are considered. The filled triangles
correspond to the average of the analysis of the two sides of the
cavity at stage (3) displays in Figure 9. The dotted lines has
a slope of 2ζ + 1 = 2.2 corresponding to a self-affine exponent
ζ = 0.6. These results are shift vertically for convenience.
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Fig. 8. log10(〈∆z(r)〉) as function of log10(r). Circles and
squares show the result of the analysis of the top and bottom
profiles after failure at T ∗ = 80 while diamonds and triangles
are obtained when top and bottom failure profiles obtained at
T ∗ = 8 are considered. These results where shifted vertically
for convenience. The dotted line has a slope of 0.6.

In this section, we have pointed out that despite the
ductility enhancement observed on the macroscopic me-
chanical properties when the temperature is raised, the
resulting post mortem profiles have a self-affine roughness
characterized by an exponent ζ = 0.59 ± 0.07, indepen-
dent of the temperature. Yet, temperature has a strong
influence on the crossover length which separates the self-

affine regime observed at small scales and the Euclidean
behavior displayed at large scales. Disordered specimens
are likely to nucleate damage cavities ahead of the crack
tip. This is the case of our specimens which contains initial
porosity. However, temperature enhances the effect of the
initial quenched disorder, and as a consequence, the pro-
cess zone, where cavities nucleate, is significantly larger
at T ∗ = 80 than at T ∗ = 8. This result suggests that the
correlation length of fracture profiles is actually the pro-
cess zone size. This was already suggested in [31,36,30]
and seems to correspond to experimental observations on
glass [32]. It also supports the idea that ductility is linked
to length scales [35]: as a matter of fact, energy dissipation
affects a smaller volume for brittle materials. Fracture pro-
files, which result from the coalescence of the macro crack
with the cavities, have also an amplitude which is limited
by the lateral extension of the process zone. However, the
value of the self affine exponent which characterize the
surfaces remains unchanged.

In other words, when the temperature rises, the excess
of stress due to the undamped kinetic energy (see Sect. 3)
becomes non negligible compared to the stress created by
the notch, and cavities are created everywhere through the
lattice. In this case, the macro crack meanders through
the whole network, and the amplitude of the post mortem
profile is increased but its geometry remains self-affine.

In order to understand how damage modifies height
correlations observed on the fracture profiles, we have
analyzed the morphology of a single cavity prior to
coalescence.

5 Structure of the damage zone

The failure of the specimens is strongly related to the oc-
currence of cavities. In order to describe quantitatively
their evolution, we focus our attention on one of the largest
cavities. Figure 9 shows the positions of atoms belonging
to the external contour of the cavity for three different
values of the strain, during crack propagation. Note that
the total number of atoms, 1600, belonging to this contour
remains unchanged through these three stages, and that
the first contour (stage (1)) is already the result of the co-
alescence of smaller cavities. We clearly see on this figure
that as the crack tip gets closer to the cavity, the latter
is more open and elongated. Moreover, when the distance
from the crack tip is important, the contour shows mean-
ders, the importance of which decreases as the crack tip
gets closer. In order to describe the tortuosity of the con-
tours and their possible scale invariance properties, the
average mass method has been selected [33].

This method is very similar to the box counting
method and consists in computing the number of atoms,
N(r) located within a circle of radius r with its center
located on one of the atoms of the contour. The average
of N(r) over all possible circle centers provides 〈N(r)〉.
Figure 10 displays the evolution of log10(〈N(r)〉) with re-
spect to log10(r), for the various contours. For a fractal
contour, 〈N(r)〉 should increase with r following a power
law, 〈N(r)〉 ∝ rD, where D is the fractal dimension. For
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Fig. 9. From the left to the right, pictures of the same cavity
at stages (1), (2) and (3) of the test performed on the porous
material at temperature 80. The distance from the crack tip
is respectively: 393, 359 and 355 atoms spacing. The boxes
indicate the left and right sides of the cavity at stage (3).

a smooth, Euclidean line, D = 1, while for a line filling
completely the plane, D = 2.

Let us first focus on the behaviour of the contour of
the cavity at stages (1) and (2). For these two stages,
the cavity displays a fractal geometry over a domain of
length scales spanning from the atom spacing, d, up to
approximately 50 d. Its fractal dimension decreases from
D = 1.5 (stage (1)) to 1.35 (stage (2)). For stage (3),
the average mass displays a more complex behaviour: for
length scales smaller than 50 d, the contour has a fractal
dimension of 1 but for larger length scales, the fractal
dimension seems to increase. In order to understand this
behaviour, we have analyzed separately the left and ride
sides of the cavity normal to the external load (Fig. 9). As
shown in Figure 10, the two sides are characterized by a
fractal dimensionD = 1 and no abrupt change is detected.

The analysis of the contour of the cavity indicates that
it is indeed fractal, with a fractal dimension which de-
creases continuously when the distance between crack tip
and cavity decreases. For large distances, the fractal di-
mension is found close to 1.5, but just before junction
between the cavity and the main crack, the contour of the
cavity has a fractal dimension of 1.

It must be remembered however that the fractal di-
mension of a self affine function is not uniquely defined: it
strongly depends on the range of length scales considered
as well as on the method used. As pointed out in the in-
troduction, the height fluctuations of a self-affine profile
is characterized by two parameters: the self-affine expo-
nent ζ and the topothesy l which is the scale at which the
slope of the profile is of the order of unity. Above l, the
fractal dimension is equal to 1 for a 2d profiles. At smaller
length scales, the dimension will depend on the method
used and is D = 2 − ζ for the average mass method. Be-
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log10(r)

1

1.5

2

2.5

3

3.5

lo
g 10

(M
(r

))
Fig. 10. Log log representation of the average mass M(r)
measured within circle of radius r applied to the three cavi-
ties displayed in Figure 9. Circle, squares and diamonds are
respectively for cavities 1, 2 and 3. Triangles up and left are
for the right and left sides of the cavity (3) displayed in Fig-
ure 9. The long dashed, the dot dashed and the dashed lines
have respectively a slope of 1.5, 1.35 and 1.

cause of the fact that in the present work the topothesy
of the two sides of the cavity is less than the atom spacing
the average mass method is not an appropriate method
to analysis possible self-affine nature of the sides of the
cavity.

As mentioned in Section 4, a more appropriate tool to
describe the self-affine nature of the profiles is the AWC
method. The latter has been applied to the two sides of the
cavity (See Fig. 7), they display a self-affine characteristic
with an exponent, ζ ∼ 0.6, close to the value obtained for
the fracture profiles over length scales ranging from 6 to
50 atoms spacing.

This section was devoted to the analysis of the mor-
phology of a single cavity. Previous works suggested that
cavities have rough walls with a self affine geometry char-
acterized by a self affine exponent close to 0.5 [9]. The
damage cavities obtained with our model is found to be
self-affine with an exponent close to the one which charac-
terizes the post mortem surface i.e. 0.6. Yet, the self affine
regime is observed over a narrow range of scale (less than
one decade), making difficult any conclusion. Neverthe-
less, the structure of the walls of the cavity was found to
be sensitive to the presence of the crack tip. This contrast
with the scenario suggested in [9] in which the surfaces
created by the failure have a “quenched” geometry.

6 Discussion

Within the framework of a bidimensional numerical
model, we have examined crack propagation and dam-
age spreading in a porous material at two “temperatures”.
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We have shown that damage develops more at high “tem-
perature”, which results into a decrease of the fracture
strength and, correlatively, into an increase in ductility.
This increase in the elongation at failure results from a
screening of the external stress by damage. No plastic-
ity is required in the model, which only involves bonds
breaking and atom rearrangements on a local scale. This
behaviour is similar to the one observed in quasi-brittle
materials [11–34].

The crack morphology exhibits in both cases the same
self-affine roughness, with an exponent close to 0.6 which
agrees with measurements and simulations performed on
2d materials [19–21]. As emphasized in previous stud-
ies [36,21]:, the presence of damage cavities ahead of the
crack tip is crucial to induce positive correlations which
lead to a roughness exponent larger than the random walk
one (1/2). The process zone size governs the height corre-
lations observed on the fracture profiles. However, in our
model, no material yielding is involved.

The structure of damage at high “temperature” is also
examined. Damage cavities are shown to be fractal, with
a fractal dimension which decreases from 1.5 to 1 prior
to coalescence with the main crack. This change in the
fractal dimension is due to the increase of the local stress
generated by the closer vicinity of the crack tip during
propagation. This increase results in the coalescence of
small cavities and in atomic rearrangements of atoms on
the cavity front which can be interpreted as a partial “de-
pinning”. A similar change in the morphology of cavities
with their size was actually observed recently in aluminum
alloys [30]. The scaling properties of the resulting crack
is, in fine, due to the relative positions of damage cavities
with respect to each other rather than to their structure,
since they are no more fractal when they join the main
crack and become part of it. Further studies of the inter-
correlations of damage cavities for 2- and 3-dimensional
systems should lead to a better understanding of the still
mysterious morphology of fracture surfaces.
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